

The Industrial Energy Manager's Essential Tool Kit

Energy Managers' Workshop

39th Industrial Energy Technology Conference New Orleans, LA, 19 June 2017

> J D Kumana, MS ChE Kumana & Associates, Houston, Tx jkumana@aol.com (281) 437-5906

Outline

- Background
- Technical Approach
- Portfolio of Tools and Techniques
- Case Study (Lagniappe)

Kumana

Kumana & Associates, Houston, Texas © 2017

	THROUGHPUT OR CAPACITY	WASTE TREATMENT	ENERGY COST	GHG EMISSIONS
YIELD + KINETICS	Î	Ţ	1	1
UNIT OPERATIONS	1	↓	1	Ţ
OPTIMUM RECYCLE	1	↓	1	1
ENERGY EFF (USAGE)	\iff	$\langle \longrightarrow \rangle$	1	Ţ
ENERGY EFF (SUPPLY)	\iff	⟨ ⇒⟩	1	1

Ideally, we should consider both Process and Energy on Integrated Basis

- PROCESS MODIFICATIONS
- → Potentially Huge Impact, but Higher Cap Cost + some Potential Risk
- ENERGY EFFICIENCY OPTIMIZATION
- → Smaller Impact, but Lower Cap Costs & Almost Zero Risk

Outline

- Background
- Technical Approach
- Portfolio of Tools and Techniques
- Case Study (bonus)

(g)^

Kumana & Associates, Houston, Texas © 2017

9

Process Energy Optimization (PEO)

Using Energy Analysis (fuel + power) to identify and exploit profitable opportunities for process efficiency improvement

Kumana & Associates, Houston, Texas © 2017

PEO Methodology

- Documentation process & econ. models
- Correct product/waste & utility pricing
- Identify major \$ impacts on Bottom Line, using sensitivity analysis (What If?)
- Focus on Critical Cost Issues (CCIs)
- 3-phase approach
 - Level 1 rules of thumb, ball park economics
 - Level 2 prelim calculations, conceptual design
 - Level 3 detailed calcs, vendor quotes

Kumana & Associates, Houston, Texas © 2017

13

PEO – Key Features

- Integrated holistic analysis
- 3-phase approach (increasing levels of effort and accuracy)
- Collaborative Effort → Consultant plays "coach/facilitator" role at Level 1; Team member at Level 2
- Immediate Results
- Implementation Road Map
- Thorough documentation
- Plant Ownership and Accountability (KPIs)

Kumana & Associates, Houston, Texas © 2017

Outline

- Background
- Technical Approach
- Portfolio of Tools and Techniques
- Case Study (bonus)

Kuma

Kumana & Associates, Houston, Texas © 2017

15

Technical Tool Kit

- "COST FLOW" DIAGRAMS for CCIs
- STRUCTURED BRAIN-STORMING

Level 1

- PFDs and HMB SIMULATION MODELS
- OPERATIONAL IMPROVEMENTS
- EQUIPMENT UPGRADES

Levels 2 & 3

- PROCESS INTEGRATION (Pinch Analysis)
 - PROCESS MODS higher capacity & yields, less waste
 - OPTIMIZED HEAT RECOVERY
 - OPTIMIZED CHP STRUCTURE
- PERFORMANCE MONITORING

Kumana & Associates, Houston, Texas © 2017

Summary of Level 1 study

Features	Benefits
Integrates Process and Energy	Lowers Unit Cost of Finished Product
Involves Your Key People	Doable Solutions, Commit to Implement
Focuses on Critical Cost Issues	Saves Time, Maximizes Results
Uses Financial & Technical Tools	Identifies Most Valuable Solutions
Creates Immediate \$\$ Results	Jump Starts Program, Instant Credibility
User Friendly Reports	Quickly Present and Implement Solutions

Kumana & Associates, Houston, Texas © 2017

10

Technical Tool Kit

- "COST FLOW" DIAGRAMS for CCIs
- STRUCTURED BRAIN-STORMING

Level 1

- PFDs and HMB SIMULATION MODELS
- OPERATIONAL IMPROVEMENTS
- EQUIPMENT UPGRADES

Levels 2 & 3

- PROCESS INTEGRATION (Pinch Analysis)
 - PROCESS MODS higher capacity & yields, less waste
 - OPTIMIZED HEAT RECOVERY
 - OPTIMIZED CHP STRUCTURE
- PERFORMANCE MONITORING

Kumana & Associates, Houston, Texas © 2017

Heat and Material Balance Simulation Models (Process + Utilities)

- Essential to get full understanding of how the Raw Materials and Energy are used
- Helps to pin-point areas of opportunity
- Suggests potential process improvements
- Essential <u>design basis</u> for Level 2 Energy Optimization study (process heat recovery as well as CHP system)

Kumana

Kumana & Associates, Houston, Texas © 2017

lan	ibie	; ПІ	MB	mo	aei	– D	IOI	ech	pia	ınt	
Matarial	ind Heat Bal	lanaa /annu	avimata)	Commontor	hroth feed r	ata	5.0	Klh/h of wat			
<u>iviateriai a</u>	inu neat bai	апсе (аррг	uximatej		tion ratio in		10.0	to be verifie			
				Latent heat			212	Btu/lb at 12		50E)	
v = -1	.6327x2 - 1	9 904× + 10	136	Latent heat			1025	Btu/lb at 12		1.7	psia partia
										100	mm Hg tot
		Stream nu	mber								,
Material	MW	1		3	4	5	6	7	8	9	
SS	1000	0.10	0.10	0	0	0	0	0	0	0	
DS	200				0.05	0	0	0	0	0	
water	18		1.62	3.38	3.54				3.70	32.92	
steam	18					2.92	33.7				
C5-OH	88	0			2.21	2.19	0		0.22	1.97	
	Total Klb/h				5.80	5.12	33.7		3.92	34.89	
_	Moles/h	278			222	187	1872		208	1851	
Pr,	mm Hg abs				760	100	9808		760	760	
	Temp, F % SS	60			0	120	377 0		210	150	
	% SS % DS	1			0	0			n n	0	
	wt% AA	0			38.4	42.9			5.7	5.7	
	Ht tr duty				30.4	3.46		36.0	3.63	34.4	
	The tr duty					5.40		30.0	0.00	U-11	
		Stream nu	mber								
Material	MW	10	11	12	13	14	15	16	17	18	
SS	1000	0	0	0	0	0	0	0	0		
DS	200	0			0	0	0		0		
water	18	36.6	0.16	36.5		31.9	33.6	0.46	0		
steam	18				1.7						
C5-OH	88				0	0	0		0.64		
	Total Klb/h				1.7	31.9	33.6		0.64	0	
-	Moles/h	2059		2033	94	1773	1867		7	0	
Pr,	mm Hg abs				9808	760	760		760		
	Temp, F % SS	68			377 0	85 0	140		80		
	% SS % DS	0			0	0	0		0		
	wt% AA	5.7			0	0			100		
	Ht tr duty	3.1		1.7	1.6	U	U	2.03	100		
	in a duty	3.1			1.0						

Operational Improvements

Energy Cost savings can be achieved at <u>little or no capital cost</u> through:

- Following industry Best Practices
- Reducing Process variability
- Flowsheet Improvements via simple process piping/control modifications
- Optimum equipment load allocation policies
- Performance Monitoring & Targeting
- Process Controls (eg. CHP optimizer, MVC)

Kumana & Associates, Houston, Texas © 2017

27

Low-cost Best Practices

- Minimize running spares
- Avoid keeping equipment on hot standby
- Maintain Steam traps, insulation
- Steam/Air leak detection & repair program
- Cooling water treatment
- Boiler & Furnace O2 controls
- Burner management
- Flue gas stack damper control
- Minimize CW and process fouling
- Optimize HX cleaning schedules/techniques

Kumana & Associates, Houston, Texas © 2017

More Advanced methods

Motherhood and Apple Pie

Benefits of Reducing Process Variability

- Energy savings
- Capacity debottlenecking (throughput)
- Improved product quality
- Improved yield
- Reduced wastes
- Increased profitability

PV = Process Variable (eg. prod. moisture %)

SP = set point

MV = Manipulated Variable (eg. steam flow)

Kumana & Associates, Houston, Texas © 2017

REF. G. Buckbee, "Closing the Gap between Engineers and Management", *Chem Eng Prog*, May 2010

29

Flowsheet Improvements

- Minimize non-isothermal mixing
- Minimize non-isoconcentration mixing
- Minimize range of recycle loops
- Avoid needless heating / cooling / pumping
- Add Degrees of Freedom via piping/control modifications (e.g. bypasses, manifolds)

Kumana & Associates, Houston, Texas © 2017

Load Management Concepts

- Minimize number of machines being operated in parallel
- Reduce the rate at which individual machines are being run, through minimizing recycle flows
- Operate equipment at near its maximum efficiency point, to the extent possible
- Assign maximum duty to the most efficient equipment (in a parallel set), and use the least efficient equipment as the "swing" machine
- Optimize sparing philosophy (eg. N+1 vs N+2)
- Add Degrees of Freedom as necessary

Kumana & Associates, Houston, Texas © 2017

Technical Tool Kit

- "COST FLOW" DIAGRAMS for CCIs
- STRUCTURED BRAIN-STORMING

Level 1

- PFDs and HMB SIMULATION MODELS
- OPERATIONAL IMPROVEMENTS
- EQUIPMENT UPGRADES

Levels 2 & 3

- PROCESS INTEGRATION (Pinch Analysis)
 - PROCESS MODS higher capacity & yields, less waste
 - OPTIMIZED HEAT RECOVERY
 - OPTIMIZED CHP STRUCTURE
- PERFORMANCE MONITORING

Kumana & Associates, Houston, Texas ©

33

Equipment Efficiency Upgrades

- Pumps
- Compressors
- Motors
- Heat Exchangers
- Fired heaters (furnaces)
- Boilers (fired and unfired)
- Steam & Gas Turbines
- Refrigeration cycles

Electronic spreadsheet templates are most convenient

Kumana & Associates, Houston, Texas © 2017

Technical Tool Kit "COST FLOW" DIAGRAMS for CCIS STRUCTURED BRAIN-STORMING PFDs and HMB SIMULATION MODELS OPERATIONAL IMPROVEMENTS EQUIPMENT UPGRADES PROCESS INTEGRATION (Pinch Analysis) OPTIMIZED HEAT RECOVERY OPTIMIZED CHP STRUCTURE PROCESS MODS – higher capacity & yields, less waste PERFORMANCE MONITORING

If you set unrealistic ROI requirements, you will FAIL

8

Kumana & Associates, Houston, Texas © 2017

57

Why use Pinch Analysis?

- Systematic procedure can find best flowsheet structure, even (in fact especially) for very complex plants
- Quicker + cheaper than traditional approach
- Rigorous energy targets; we know when to quit
- Saves energy and capital without sacrificing safety, operating flexibility, or reliability
- For new plant design, there is an optimum time to do it; but Mgmt needs to be made aware.

Kumana & Associates, Houston, Texas © 2017

Performance Metrics - KPIs and EPIs						
INDEX TYPE Corp KPI	APPLICATIONSOrg efficiency trendExternal Benchmarking					
Plant EPIs • Product	Cost AccountingEconomic dispatchPlanning					
 Process 	Performance trend monitoringOperations troubleshootingDesign Improvement					
Equipment	Process controlEquipment troubleshootingTargeted maintenance					
Kumana & Associates, Houston, Te	Kumana & Associates, Houston, Texas © 2017					

Necessary Features of Good KPIs

- <u>Directional Consistency</u>: When we do something good (e.g. make more profit), the KPI should get better
- Magnitude Consistency: The magnitude of change in the Index should closely match the change in profit, or efficiency, or whatever it is we are measuring.

All KPIs must meet these 2 tests

Kumana & Associates, Houston, Texas © 2017

The End Questions ???? Kumana & Associates, Houston, Texas © 2017

Case Study – generic BioTech plant

- High-value biomass product
- Fermentation + evaporation + drying
- Design based on scale-up of lab process
- 8000 hours per yr operation

Kumana & Associates, Houston, Texas © 2017

Optimized Utility Costs & Savings

	Energy	prices	Existing design		Optimized	design	Cost Savings		
	\$/unit	units	usage	K\$/yr	usage	K\$/yr	%	K\$/yr	
600 stm	6.7	MMBtu	0	0	0	0	0	0	
175 stm	5.5	MMBtu	24.0	1056	9.5	418	60	638	
BFW	-0.5	MMBtu	0	0	0.9	-4	n/a	4	
air	0.4	MMBtu	0	0	0	0	0	0	
CW	0.9	MMBtu	16.6	119	1.7	12	90	107	
Refrig	6	MMBtu	0.4	20	0.4	20	0	0	
Elec, kw	0.05	kwh	0	0	146	58	n/a	-58	
WW, gpm	3.5	100 gal	138	233	30	51	78	182	
		_		1428		556	61	872	

- Minor changes → Major opex savings (energy + CO2 + WWT)
- New cream separator + recycle improves yield
- New fermenter cooling design saved 50% of Rfg (not described)
- 60% smaller cogeneration project → capital savings
- Negligible technical risk; Zero commercial risk
- Straight-forward methodology (minimal trial & error)

NO TO

Kumana & Associates, Houston, Texas © 2017